Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
eNeuro ; 10(8)2023 08.
Article in English | MEDLINE | ID: mdl-37550058

ABSTRACT

Over the past decade, ketamine, an NMDA receptor antagonist, has demonstrated fast-acting antidepressant effects previously unseen with monoaminergic-based therapeutics. Concerns regarding psychotomimetic effects limit the use of ketamine for certain patient populations. Reelin, an extracellular matrix glycoprotein, has shown promise as a putative fast-acting antidepressant in a model of chronic stress. However, research has not yet demonstrated the changes that occur rapidly after peripheral reelin administration. To address this key gap in knowledge, male Long-Evans rats underwent a chronic corticosterone (CORT; or vehicle) paradigm (40 mg/kg, 21 d). On day 21, rats were then administered an acute dose of ketamine (10 mg/kg, i.p.), reelin (3 µg, i.v.), or vehicle. Twenty-four hours after administration, rats underwent behavioral or in vivo electrophysiological testing before killing. Immunohistochemistry was used to confirm changes in hippocampal reelin immunoreactivity. Lastly, the hippocampus was microdissected from fresh tissue to ascertain whole cell and synaptic-specific changes in protein expression through Western blotting. Chronic corticosterone induced a chronic stress phenotype in the forced swim test and sucrose preference test (SPT). Both reelin and ketamine rescued immobility and swimming, however reelin alone rescued latency to immobility. In vivo electrophysiology revealed decreases in hippocampal long-term potentiation (LTP) after chronic stress which was increased significantly by both ketamine and reelin. Reelin immunoreactivity in the dentate gyrus paralleled the behavioral and electrophysiological findings, but no significant changes were observed in synaptic-level protein expression. This exploratory research supports the putative rapid-acting antidepressant effects of an acute dose of reelin across behavioral, electrophysiological, and molecular measures.


Subject(s)
Ketamine , Rats , Male , Animals , Ketamine/pharmacology , Corticosterone/pharmacology , Corticosterone/metabolism , Rats, Long-Evans , Benchmarking , Hippocampus/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Depression
2.
Front Cell Dev Biol ; 10: 885440, 2022.
Article in English | MEDLINE | ID: mdl-35573682

ABSTRACT

Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems. With this review, we aim to provide a survey of the current landscape of reported indicators. We hope this review will be a useful guide to researchers who are interested in using indicators for biological applications and to tool developers seeking opportunities to create new and improved indicators.

3.
Alcohol Clin Exp Res ; 45(11): 2246-2255, 2021 11.
Article in English | MEDLINE | ID: mdl-34523142

ABSTRACT

BACKGROUND: We recently showed that alcohol and cannabis can interact prenatally, and in a recent review paper, we identified parvalbumin-positive (PV) interneurons in the hippocampus as a potential point of convergence for these teratogens. METHODS: A 2 (Ethanol [EtOH], Air) × 2 (tetrahydrocannabinol [THC], Vehicle) design was used to expose pregnant Sprague-Dawley rats to either EtOH or air, in addition to either THC or the inhalant vehicle solution, during gestational days 5-20. Immunohistochemistry was performed to detect PV interneurons in 1 male and 1 female pup from each litter at postnatal day 70. RESULTS: Significant between-group and subregion-specific effects were found in the dorsal cornu ammonis 1 (CA1) subfield and the ventral dentate gyrus (DG). In the dorsal CA1 subfield, there was an increase in the number of PV interneurons in both the EtOH and EtOH +THC groups, but a decrease with THC alone. There were fewer changes in interneuron numbers overall in the DG, though there was a sex difference, with a decrease in the number of PV interneurons in the THC-exposed group in males. There was also a greater cell layer volume in the DG in the EtOH +THC group than the control group, and in the CA1 region in the EtOH group compared to the control and THC groups. CONCLUSIONS: Prenatal exposure to alcohol and THC differentially affects parvalbumin-positive interneuron numbers in the hippocampus, indicating that both individual and combined exposure can impact the balance of excitation and inhibition in a structure critically involved in learning and memory processes.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Hippocampus/metabolism , Interneurons/metabolism , Parvalbumins/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Cannabis/metabolism , Dentate Gyrus/drug effects , Female , Hippocampus/drug effects , Interneurons/drug effects , Parvalbumins/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley
4.
Neurosci Res ; 152: 3-14, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31991206

ABSTRACT

Genetically encoded fluorescent indicators have transformed the way neuroscientists record neuronal activities and interrogate the nervous system in vivo. In this review, we discuss recent advances and new additions to the toolkit of indicators for calcium ion entry, membrane voltage change, neurotransmitter release, and other neuronal molecular processes. We highlight new engineering approaches for indicator design and development, and identify key areas for future improvement. From molecular tool developers' perspective, we aim to provide practical information for neuroscientists to evaluate and choose the most appropriate indicators for enabling new insights into brain function.


Subject(s)
Microscopy/methods , Neurons/physiology , Optical Imaging/methods , Optogenetics/methods , Animals , Calcium/metabolism , Calcium Signaling , Engineering , Genetic Engineering , Humans , Indicators and Reagents , Membrane Potentials/physiology , Neurotransmitter Agents/metabolism , Voltage-Sensitive Dye Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL